Pandit Deendayal Petroleum University

School of Technology

18BSC601P					Physical Chemistry Lab – I					
Teaching Scheme					Examination Scheme					
	Т	Р	С	Hrs/Week	Theory			Practical		Total
-					MS	ES	IA	LW	LE/Viva	Marks
0	0	2	1	2				50	50	100

COURSE OBJECTIVES

- > To understand the working principle ofpH meter, conductivity meter and potentiometer
- > To learn titrimetric method for chemical analysis
- > To learn the basic concepts of buffer solution and pKa
- To understand the basic concepts adsorption and chemical kintetics.
- > To know the significance of analytical chemistry in qualitative and quantitative analysis

LIST OF EXPERIMENTS

- 1. Determine experimentally the partition coefficient of I₂ in CCl₄ and water.
- 2. Determine solubility of benzoic acid at different temperatures and calculate ΔH of dissolution.
- 3. To determine the composition of mixture of acids by Conductometrically.
- 4. Determination of pKa values of orthophosphoric acid using pH meter.
- 5. Determination of rate constant of decomposition of Hydrogen peroxide by acidified potassium iodide.
- 6. Investigation of the reaction between Acetone and Iodine.
- 7. Volumetric analysis of given sample of brass alloy.
- 8. To estimate amount of ferrous ion present in the solution by K₂Cr₂O₇.
- 9. Determination of pH of a buffer solution by colour matching of indicator.
- 10. Determination of the concentration of Iodide, Bromide and chloride in the mixture by potentiometric titration with AgNO₃.
- 11. Potentiometric titration of a standard solution of KCl against AgNO₃ solution.
- 12. To study the adsorption of acetic acid on charcoal and to verify freundlich isotherm.
- 13. Study of chemical kinetics of Methyl acetate ester (acid) hydrolysis.

COURSE OUTCOMES

On completion of the course, student will be able to

CO1- Understand the use of different instrumental techniques such as pH, conductivity & potentiometers.

CO2– Interpret the results obtained from the instrumental techniques.

CO3- Conceptualize the analytical methods for chemical applications.

CO4– Analyse the interaction of materials present in ionic medium.

CO5— Analyse and demonstrate the applications of analytical tools in chemical industry.

CO6- Elucidate the ionic behaviour of different solutions with the knowledge of physico-analytical methods.

TEXT/REFERENCE BOOKS

- 1. Practicals in Physical Chemistry, P S Sindhu, Macmillan, 2005.
- 2. Experiments in Physical Chemistry 2nd Edition, J. M. Wilson, R. J. Newcombe, A. R. Denaro, Pergamon Press.

SEMESTER EXAMINATION PATTERN

Max. Marks: 100 LW(Daily lab performance plus journal) LE (Viva-voce plus Lab examination) Exam Duration: 3 Hrs 50 Marks 50 Marks