Pandit Deendayal Petroleum University

School of Technology

50 Marks

50 Marks

17BSC401P					Analytical Chemistry-I Lab						
Teaching Scheme				me	Examination Scheme						
	-	Р	С	Hrs/Week	Theory			Practical		Total	
L	•				MS	ES	IA	LW	LE/Viva	Marks	
0	0	2	1	2				50	50	100	

COURSE OBJECTIVES

- Care about safety precautions during work in the laboratory.
- Understand the scientific back ground of the practical's for industrial and domestic use.
- Comprehend the adsorption principle and its application.
- Experience with spectroscopic techniques to characterize the synthesized complex.
- > Evaluating abilities in line with the modern trends in science and technology.

LIST OF EXPERIMENTS

- 1. To determine soil pH by using a pH-meter.
- 2. To determine the strength of given mixture of HCl and CH₃COOH by conductometric titration.
- 3. Gravimetric determination of Sulphate as Barium Sulphate.
- 4. Spectrophotometric determination of Iron by complexing with 1,10 Phenanthroline .
- 5. Determination of hexavalent chromium by complexing with di-phenyl carbazide, using a spectrophotometer.
- 6. Estimation of oil and grease from a given sample after solvent extraction.
- 7. Determination of distribution coefficient of an organic acid between water and an organic solvent.
- 8. To determine the Chemical Oxygen demand (COD) in a given water sample.
- 9. Determination of elements (e.g., Cu) in aqueous solutions by Atomic absorption spectrometer.
- 10. Adsorption of Acetic acid on charcoal.

COURSE OUTCOMES

On completion of the course, student will be able to

- CO1– Capable of designing set of new experiment.
- CO2- Comprehend conductometric titration to calculate the unknown concentration.
- CO3- Understand the electrode functional and calculate the pH of any unknown solution.
- CO4– Able to determine the amount of oxygen in different water sample and its significance.
- CO5– Apply the atomic absorption spectroscopy to investigate the different industrial solution.
- CO6- Create a new scientific method to be use in the domestic and industrial purpose.

TEXT/REFERENCE BOOKS

- 1. A. I. Vogel, A text book of quantitative Inorganic Analysis, ELBS.
- 2. A. K. Nad, B. Mahapatra & A. Ghosal, An Advanced Course in Practical Chemistry, New Central, 2007. Vogel's Text Book of Practical Organic Chemistry (5th Edn).

SEMESTER EXAMINATION PATTERN

Max. Marks: 100 Exam Duration: 3 Hrs

LW(Daily lab performance plus journal maintain each 25 marks)

LE (Viva-voce plus Lab examination each 25 marks)