16BSC101P					Chemistry –I Practical					
Teaching Scheme					Examination Scheme					
	1	Р	С	Hrs./Week	Theory			Practical		Total
-	'							LW	LE/Viva	Marks
0	0	2	1	2				50	50	100

COURSE OBJECTIVES

- Learn the safety rules regarding working in the chemical laboratory.
- > Imparting scientific methodology for importance of chemistry for industrial and domestic use.
- Acquire the concept of sampling method which are practical used.
- Comprehend the theoretical back ground of each practical.
- > Able to calculate the unknown concentration through different titration procedure.
- > To enhance the thinking capabilities in line with the modern trends in science and technology.

LIST OF EXPERIMENTS

1. Calibration and use of apparatus

(a)Preparation of solutions of different Molarity/Normality of titrants, (b) Calibration of burette and pipette

2. Acid-Base Titrations

(a)Estimation of carbonate and hydroxide present together in mixture, (b) Estimation of carbonate and bicarbonate present together in a mixture, (c) Estimation of free alkali present in soaps/detergents

3. Oxidation-Reduction Titrimetry

(a)Estimation of Fe(II) and oxalic acid using standardized KMnO₄ solution, (b) Estimation of oxalic acid and sodium oxalate in a given mixture Estimation of Fe(II) with $K_2Cr_2O_7$.

4. Complexometric titration

(a) Estimation of Hardness of water by EDTA, (b) Estimation of chloride in water sample

- Determine the surface tension by (i) drop number (ii) drop weight method.
- Viscosity measurement using Ostwald's viscometer of (i) polymer (ii) ethanol and sugar at RT.
- 7. Quantitative estimations of Ni⁺² as Ni-dimethyl glyoxime.
- 8. Preparation of Prussian blue from iron fillings.
- **9.** Preparation of tetraamine cupric sulphate.
- **10.** To study the distribution of iodine between water and CCl₄.
- 11. Determine the number of molecules of water of crystallisation in ferrous ammonium sulphate FeSO₄ (NH₄)₂SO₄.xH₂O, 20 gm of which have been dissolved per litre provided app. N/20 KMNO₄ solution.
- 12. To determine the percentage purity of the given sample of MgSO₄.7H2O and also determine the percentage of magnesium in it by N/20 EDTA solution
 - 14. To determine the specific reaction rate of the hydrolysis of ethyl acetate (or methyl acetate) catalyzed by hydrogen ions at room temperature.

COURSE OUTCOMES

On completion of the course, student will be able to

CO1– Able to design and perform a set of experiment

CO2- Capable to synthesis different inorganic complexes

CO3- Analyze the hard and soft water limit in water through complexometric titration

CO4– Apply basic techniques for laboratory for sample preparation, purification and concentration measurement

CO5-Identify, interpret and analyse the data integrity and the results from the experiments

CO6- Use the scientific method to create, test, and evaluate a hypothesis

TEXT/REFERENCE BOOKS

Max. Marks: 100

- 1. Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.
- A. I. Vogel, A text book of quantitative Inorganic Analysis, ELBS.
- A. K. Nad, B. Mahapatra & A. Ghosal, An Advanced Course in Practical Chemistry, New Central, 2007. Vogel's Text Book of Practical Organic Chemistry (5th Edn).

SEMESTER EXAMINATION PATTERN

LW(Daily lab performance plus journal maintain each 25 marks)

LE (Viva-voce plus Lab examination each 25 marks)

Exam Duration: 3 Hrs

50 Marks 50 Marks