Pandit Deendayal Petroleum University

School of Liberal Studies

20BSM410T					Mathematical Physics					
Teaching Scheme					Examination Scheme					
L	т	Р	с	Hrs. / Week	Theory			Practical		Total
					MS	ES	IA	LW	LE/Viva	Marks
3	1	0	4	4	25	50	25			100

COURSE OBJECTIVES

To be able to understand deep science concepts on the ground of tensors.

- To be able to apply the Z Transforms in relevant physical problems.
- ➤ To be able to understand the role of Fourier series in periodic systems.
- To study the various aspects and properties of curvilinear co-ordinate system.

UNIT 1 BASICS OF TENSORS

Summation convention, Kronecker delta, Determinant, Four vectors, transformation of coordinates, tensor, symmetric tensor, antisymmetric tensor, algebra of tensors, contraction.

UNIT 2 Z – TRANSFORMS

Introduction, sequence, representation of a sequence, definition of a z-transform, change of scale, shifting property, Inverse z-transform, solution of difference equations, Multiplication by K, Division by K, Initial value, final value, partial sum, convolution, convolution property of Casual sequence, Transform of Important sequences, Inverse of Z-transform by division

UNIT 3 FOURIER SERIES AND FOURIER TRANSFORM

Application. Summing of Infinite Series. Term-by-Term differentiation and integration of Fourier Series. Parseval's Identity and its applications, Complex Form of Fourier Series, Fourier Transform.

UNIT 4 CURVILINEAR CO-ORDINATE SYSTEM

Coordinate systems, Orthogonal curvilinear co-ordinates, Condition for Orthogonality, Reciprocal sets of two triads of mutually orthogonal vectors, Gradient in terms of orthogonal curvilinear co-ordinates, Curl in terms of curvilinear co-ordinates, Curl in terms of curvilinear co-ordinates, Curl in terms of curvilinear co-ordinates.

40 Hrs.

COURSE OUTCOMES

On completion of the course, student will be able to

- CO1 Identify the use of tensors theoretically and relate them with the scalars and vectors and why the study evolved.
- CO2 Understand various application of tensors in Physics and other deep scientific phenomena on the basis of the knowledge gained.
- CO3 Explain the Z Transforms to extract the solutions of engineering problems.
- CO4 Analyze various periodical systems on the ground of Fourier series.
- CO5 Appraise interconnection between rectangular and curvilinear co-ordinate system.

CO6 – Produce the relations of Gradient, Divergence and Curl in curvilinear co-ordinate system.

TEXT / REFERENCE BOOKS

- 1. J. K. Goyal, and K. P. Gupta, Theory of Relativity (Special & General), 22nd ed., Krishna Prakashan Media (P) Ltd., 2014.
- 2. G. B. Arfken, H. J. Weber and F. E., Harris, Mathematical Methods for Physicists, 4th ed., Elsevier, 2005.
- 3. H. K. Dass, Advanced Engineering Mathematics, 1st ed. (Reprint), S. Chand, 2009.
- 4. Mary L Boas, Mathematical Methods in Physical Science, 3rd ed., John Wiley & Sons, 2005.
- 5. B. D. Gupta, Mathematical Physics, 4th ed., Vikas Publishing House Pvt. Ltd., 2018
- 6. D. Spellman, M. Spiegel and S. Lipschutz, Vector Analysis, 2nd ed., Schaum's Outline Series, 2009.

END SEMESTER EXAMINATION QUESTION PAPER PATTERN

Max. Marks: 100	Exam Duration: 3 Hrs.
Part A: 6 questions of 4 marks each	24 Marks
Part B: 6 questions of 8 marks each	48 Marks
Part C: 2 questions of 14 marks each	28 Marks

12 Hrs.

08 Hrs.

10 Hrs.

10 Hrs.