Pandit Deendayal Petroleum University

School of Liberal Studies

10 Hrs.

10 Hrs.

10 Hrs.

10 Hrs.

40 Hrs.

20BSM409T				г	Тороlоду					
Teaching Scheme				me	Examination Scheme					
L	т	Р	с	Hrs/Week	Theory			Practical		Total
					MS	ES	IA	LW	LE/Viva	Marks
3	1	0	4	4	25	50	25			100

COURSE OBJECTIVES

?	To understand the difference of metric Space in Real Analysis and in terms of topology.	

- To impart knowledge on the conceptual understanding of connectedness and compactness in topological aspects.
- To provide sufficient knowledge of the subject which can be used by student for in their respective domains of interest.
- Denhance the knowledge of "Ti" axioms to build strong fundamentals in order to understand advanced topological results.

UNIT 1 TOPOLOGICAL SPACES

Topological spaces, Basis and sub-basis for a topology, Discrete topology, Product topology, Subspace topology, Quotient topology, comparison of topologies.

UNIT 2 TOPOLOGY IN REAL LINE

Neighbourhood, Cluster points, Closure and interior points of a set, Definition and examples of a door space and dense set, Continuity in a topological space and homeomorphism.

UNIT 3 CONNECTEDNESS

Definition and examples of connected and disconnected spaces, Connectedness in R, Relative topology, Connected subspaces, Open cover.

UNIT 4 COMPACTNESS

Compactness in R1; R2 and metric space, Properties of compact spaces, Definition and examples of T0; T1; T2 - space, Hausdorff property of a metric space.

COURSE OUTCOMES

On completion of the course, student will be able to

- CO1 Identify the necessity of studying topological problems and to explore its importance with geometry as well
- CO2 Explain the structure of different topological spaces.
- CO3 Demonstrate the use of applications of set theory in terms of topological terminologies.
- CO4 Analyze mathematical notions geometrically.
- CO5 Appraise general topological structures by using the reasoning capability and logical thinking.
- CO6 Develop an appreciation of mathematical abstraction and generalization.

TEXT/REFERENCE BOOKS

- 1. G.F. Simmons, Introduction to Topology and Modern Analysis, 1st edition, McGraw Hill, 1963.
- 2. J.R. Munkres, Topology, 2nd edition, Prentice Hall, 1999.
- 3. K.D. Joshi, Introduction to General Topology, 2nd edition, New Age Publications, 1999.
- 4. S. Naimpally and J. Peters, Topology with Applications: Topological Spaces via Near and Far, World Scientific, 2013.

END SEMESTER EXAMINATION QUESTION PAPER PATTERN

Max. Marks: 100	Exam Duration: 3 Hrs
Part A: 6 questions of 4 marks each	24 Marks
Part B: 6 questions of 8 marks each	48 Marks
Part C: 2 questions of 14 marks each	28 Marks