					19BSM6	04 –Mode	rn Algeb	ra		
Teaching Scheme Examination Scheme									eme	
L	Т	Р	С	Hrs/Wee	Theory Prac			actical	Total	
				k	MS	ES	IA	LW	LE/Viv a	Marks
3	1		4	4	25	50	25			100
					C	DBJECTIV	/ES			
	1.	To ii	ntrod	luce students	s to the Al	gebra of r	number sy	vstem.		~
	2.	To e	quip	students with	th necessa	ary knowle	edge and	skills to	enable ther	n handle
		matł	nema	tical operati	ons, analy	ses and p	roblems i	nvolving	g Algebra.	
	3.	To ii	ntrod	luce the use	of Abstra	ct Algebra	in Real v	vorld.		
						SYLLAB	U S			
Uı	nit-l	[10	
Soi	ne B	asic	Set th	eory concent	s <mark>Rinary (</mark>	neration o	naset Al	gebraic st	ructure Gro	un Abelian
Gro	oup,	finite	and	infinite group	s, order of	a finite gr	oup, gener	al proper	ties of a gro	up, addition
mo	dulo	m, m	nultip	lication modu	ilo p, resid	lue classes	of the set	of integer	<mark>s.</mark> Permutati	ons, Groups
of	perm	utatio	ons.							
UN	IT I	Ι							10	
Ore	ler o	fan	eleme	ent of a group	p, isomorp	hism of gr	oups, com	plexes an	nd subgroup	s of a group,
inte	ersec	tion	of su	bgroups, cos	ets, relation	on of cong	gruence m	odulo. C	ayley's the	orem, Cyclic
gro	ups,	Norn	nal S	ubgroup. Quo	otient Grou	ıp, Homom	orphism o	f groups.		
UNIT III							10	10		
De	finiti	on o	f Rir	ng, Elementa	ry proper	ties of a 1	ing, Ring	s with o	r without z	ero divisors,
Inte	egral	dom	ain,	field, division	n ring or s	kew field,	isomorphi	ism of rii	ngs, Subring	s, Subfields,
Ch	aract	eristi	c of a	a ring.						
UNIT IV									9	
Ore	lered	inte	gral	domains, the	field of a	quotients, l	deals, Pri	ncipal id	eal, Principa	al ideal ring,
pol	ynon	nial 1	rings,	Homomorph	ism of rin	gs, Kernel	of a ring	homomo	rphism, Max	ximal Ideals.
Ap	plica	tion o	of Gr	oup, Ring, Fi	eld in Real	l world pro	blem.			
AP	PRC	DXIN	IATE	E TOTAL					39	Hours
					OUTCON	MES			•	
	1.	Und	ersta	nd the basic	idea of al	lgebra of 1	numbers i	n the for	m of	
		Grou	up, R	ing and Fiel	d.					
	2.	Defi	ne th	ne properties	of Groun	, Ring and	d Field.			
	3. Define the type of Group, Ring and Field.									
	4	Defi	ne d	ifferent exar	nple of G	roup Ring	and Fiel	d from r	eal	
		worl	d		r	·····	,			
		worl	u.							

5. Understand the application of abstract algebra in different field of science and engineering.

TEXTS AND REFERENCES

- 1. Modern Algebra by A. R. Vasishtha, Krishna Prakashan Media (P) Ltd., 2002.
- 2. Abstract AlgebraTheory and Applicationsby Thomas W. Judson, Orthogonal Publishing.
- 3. Topics in Algebra by I. N. Herstein, second edition, John Wiley and Sons.