Pandit Deendayal Petroleum University

School of Liberal Studies

08 Hrs.

10 Hrs.

10 Hrs.

12 Hrs.

40 Hrs.

20BSM306E					Special Functions					
Teaching Scheme					Examination Scheme					
L	т	Р	с	Hrs. / Week	Theory			Practical		Total
					MS	ES	IA	LW	LE/Viva	Marks
3	0	0	3	3	25	50	25			100
OUF	SE OB	JECTIV	ES	1					1	
≻	To b	<mark>e able t</mark>	<mark>o unde</mark> i	rstand the concept	of important	special function	ns.			
×	To b	e able t	o obtaiı	n the solution of ed	uation in the	form of special	functions.			
×	To be able to analyze the use of special function in real life problems.									
×	Tob	e able s	tudy th	e advantage of spe	cial function a	as solution of va	arious real worl	d problems.		

UNIT 1 GAMMA AND BETA FUNCTIONS

The Gamma and Beta Functions: Euler's integral for $\Gamma(z)$, the beta function, factorial function.

UNIT 2 BESSEL EQUATION

B<mark>essel equation and its solution, Bessel function of first and second kind of order *n*. Recurrence relations, Generating function, Orthogonality of Bessel's function.</mark>

UNIT 3 LEGENDRE EQUATION

Legendre equation and its solution. Legendre's polynomial of degree n. Recurrence relations, orthogonal properties of Legendre's polynomial, Rodrigue's formula, Legendre's polynomial.

UNIT 4 HYPERGEOMETRIC FUNCTION

The Hypergeometric function: An integral representation. Its differential equation and solutions. , F(a,b,c;1) as a function of the parameters, evaluation of F(a,b,c;1), contiguous function relations, the hypergeometric differential equation, logarithmic solutions of the hypergeometric equation, F(a,b,c;z) as a function of its parameters

COURSE OUTCOMES

On completion of the course, student will be able to

CO1 – Identify the use of special functions and polynomials

CO2 – Understand the concept of Beta and Gamma function in evaluation of integrals.

- CO3 Develop the ability to apply Bessel function to solve differential equations.
- CO4 Analyze the obtained solution in context with special functions.
- CO5 Appraise mathematical problems in term of special functions from real to complex domain.

CO6 – Evaluate problems on understanding of how physical phenomena are modeled using special functions.

TEXT/REFERENCE BOOKS

- 1. M.D. Raisinghania, Advanced differential equations, S Chand, (19th edition), 1995.
- 2. L.C. Andrews ,Special Functions of Mathematics for Engineers, SPIE Press, 1992.
- 3. L.J. Slater, Generalized Hypergeometric Functions, Cambridge University Press; Reissue edition, 2008.
- 4. Z. X. Wang and D. R. Guo, Special Functions, World Scientific publishing Co., 1989.
- 5. Gabor Szego, Orthogonal Polynomials, American mathematical society, 1939.
- 6. L. Debnath, Integral transforms and their Applications, CRC Press, New YorkLondon- Tokyo, 1995.

END SEMESTER EXAMINATION QUESTION PAPER PATTERN

Max. Marks: 100	Exam Duration: 3 Hrs.
Part A: 6 questions of 4 marks each	24 Marks
Part B: 6 questions of 8 marks each	48 Marks
Part C: 2 questions of 14 marks each	28 Marks