Pandit Deendayal Energy University

20MSM613T					Numerical Solution of Differential Equations					
Teaching Scheme					Examination Scheme					
L	т	Р	с	Hrs. / Week	Theory			Practical		Total
					MS	ES	IA	LW	LE/Viva	Marks
3	1	0	4	4	25	50	25			100

COURSE OBJECTIVES

- Apply the concept of Splines for solving ordinary differential equations.
- \succ Analyze the stability of the methods.
- Construct the Initial value problems for ordinary differential equations. \succ
- > Develop the solutions for parabolic, elliptic and hyperbolic equations.

UNIT 1 SPLINES AND THEIR APPLICATIONS

Introduction, Spline Approximation, Uniqueness of Cubic Splines, Construction of Cubic Splines (First and Second Derivative form), Minimal Property of a Cubic Spline, Applications to Differential Equations.

UNIT 2 INITIAL VALUE PROBLEMS

Initial value problem for ODEs, Zero-stability and convergence for initial value problems, Absolute stability for ODEs, Stiff ODEs, Diffusion equations and parabolic problems, Advection equations and hyperbolic systems.

UNIT 3 PARTIAL DIFFERENTIAL EQUATIONS

Finite Difference approximations for derivatives, Methods for solving parabolic equations – Explicit, Implicit and Crank-Nicolson's methods. Comparison of three schemes. Parabolic equation in two dimensions, ADI method, Non-rectangular space domains.

UNIT 4 ELLIPTIC AND HYPERBOLIC EQUATIONS

Elliptic equations – Solution by Gauss-Seidel and Gauss Elimination, Solution by SOR method, Solution of elliptic equation by ADI method. Hyperbolic equations – Finite difference methods, Explicit method, Implicit method, Stability analysis.

COURSE OUTCOMES

On completion of the course, student will be able to

CO1 – Understand the initial – boundary value problems.

- CO2 Classify the partial differential equations.
- CO3 Apply cubic splines method for solving ordinary differential equations.
- CO4 Analyze the solutions obtained by solving ODEs.
- CO5 Analyze the stability of the methods.
- CO6 Develop the PDEs and solve them.

TEXT / REFERENCE BOOKS

- 1. M.K. Jain, S.R.K. Iyenger and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, 5th ed., New Age International, 2007.
- 2. C. F. Gerald and P. O. Wheatley, Applied Numerical analysis, 7th ed., Pearson education, 2003.
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, 9th ed., Wiley publication, 2005.
- 4. R.K. Jain and S.R.K. Iyenger, Advanced Engineering Mathematics, 3rd ed., Narosa, 2002.

School of Technology

10 Hrs.

10 Hrs.

10 Hrs.

40 Hrs.

10 Hrs.