Objectives:

- 1. To familiarize integration of several variable concept, familiarize integration formulas and to countercheck anti-differentiation by its inverse problem sciences.
- 2. To familiarize different integration techniques
- 3. To tackle several integration applications with deep concentration to engineering.
- 4. To familiarize iterated integration as plane area and as volume and to analyze volume in general regions.
- 5. To acquaint the students about the applications of various concepts of Mathematics mentioned in the syllabus.

BSM 301 CALCULUS OF SEVERAL VARIABLES- II										
Teaching Scheme					Examination Scheme					
L	T	P	C	Hrs./Wee	Theory			Practical		Total
				k						Marks
					MS	ES	IA	LW	LE/Viva	
4	0	0	4	4	25	50	25			100

Unit-I [9]

PREREQUISITES

A course in one variable calculus

Functions of several variables and examples; continuity; concept of distances in higher dimension; examples; how to define differentiable functions.

Unit-II [10]

Directional derivatives as direct generalization from one variable; drawbacks; definition of differentiable functions of several variable; examples; matrix of a linear transformation; Jacobian matrix; recovering directional derivative from derivative; chain rule.

Unit-III [10

Comparison with one variable calculus: higher derivatives and Taylor's formula; Sufficient condition for equality of mixed derivatives; extremas for real valued function and special case for functions with two variables. Triple integrations

Unit-IV [10]

Statement of Implicit Function Theorem and Inverse Function Theorem. Divergence and curl. Identities forgrad, div and curl. Green's, Stokes's and Gauss's theorems. Lagrange's Multipliers.

APPROXIMATE TOTAL

Texts and References

- 1. Principles of Mathematical Analysis, W. Rudin
- 2. Calculus ? T. Apostol
- 3. Mathematical Analysis, T. Apostol

Course Outcomes:

- 1. Students obtain the skills necessary to deal with models in engineering and science involving *differential calculus of several variable*.
- 2. Students gain a familiarity with the *elementary special functions* (e.g. exponential, log, and trigonometric functions) which arise in engineering and science.
- 3. Students gain a familiarity with the application of function of several variable which arise in engineering and science.
- 4. Students learn the basic calculus and analytic geometry concepts in order to understand the development of many models in engineering and science.