20MA203T					Mathematics – III: Electrical Engineering					
Teaching Scheme				me	Examination Scheme					
	т	Р	с	Hrs. / Week	Theory			Practical		Total
Ľ					MS	ES	IA	LW	LE/Viva	Marks
3	1	0	4	4	25	50	25			100

COURSE OBJECTIVES

- To understand the concept of Fourier series and its application to the solution of partial differential equations.
- To introduce the Fourier transforms and Z-transforms.
- To study the first and second order partial differential equations.
- > To use this course as a base for higher studies and for accomplishing the projects at higher semesters.

UNIT 1 FOURIER SERIES

Periodic functions, Euler's formulae, Dirichlet's conditions, expansion of even and odd functions, half range Fourier sine and cosine series, Parseval's formula, complex form of Fourier series.

UNIT 2 FOURIER TRANSFORM AND Z-TRANSFORM

Fourier Transform: Integral transform, Fourier integral theorem, Fourier sine and cosine integrals, Fourier transforms, Fourier sine and cosine transforms, Properties of Fourier transform, Convolution, Parseval's identity, Relationship between Fourier and Laplace transform.

Z-transform: Z - transform, Properties of Z-transforms, Convolution of two sequences, inverse Z-transform, Solution of Difference equations

UNIT 3 PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER

Formation of Partial Differential Equations (PDEs), Solutions of PDEs of first order, Cauchy problem for first order PDEs, Lagrange's method, Charpit and Jacobi methods for solving first order nonlinear PDEs

UNIT 4 PARTIAL DIFFERENTIAL EQUATIONS OF SECOND ORDER

Classification of second order Partial Differential Equations, Method of separation of v	variables. Fourier Series Solutions of one-dimensional
wave equation, One dimensional heat conduction, two dimensional Laplace equations.	

COURSE OUTCOMES On completion of the course, student will be able to CO1 – Identify the partial differential equations of first and second order in order to model or understand the Electrical Engineering

- applications. CO2 – Understand the techniques of Fourier transforms and Z-transforms to understand the critical mathematical problems.
- CO3 Apply the methods of Fourier series, Fourier transform and Z-transform in understanding and solving the basic Electrical Engineering problems.
- CO4 Classify the second order partial differential equations and solve using method of separation of variables.
- CO5 Appraise the series representation of periodic functions using Fourier series.
- CO6 Formulate the first order partial differential equations and solve them using various analytical techniques.

TEXT / REFERENCE BOOKS

- 1. H. K. Dass, Advanced Engineering Mathematics, 21st ed., S. Chand & Company Ltd., 2013.
- 2. R.K. Jain & S.R.K. Iyengar, Advanced Engineering Mathematics, 3rd ed., Narosa Publishing House, 2002.
- E. Kreyszig, Advanced Engineering Mathematics, 10th ed., John Wiley & Sons, 2016. 3.
- Peter V. O'Neil, Advanced Engineering Mathematics, 8th ed., Cengage Learning, 2017. 4.
- K. Sankara Rao, Introduction to Partial Differential Equations, 3rd ed., PHI Learning, 2011. 5.
- T. Amaranth, An Elementary Course in Partial Differential Equations, 2nd ed., Narosa Publishing House, New Delhi, 2003. 6.

10 Hrs.

10 Hrs.

10 Hrs.

10 Hrs.

40 Hrs.