Pandi	t Deen	dayal E	nergy l	Jniversity	School of Technology					
20MSM501T					Real Analysis					
Teaching Scheme					Examination Scheme					
L	т	Р	C	Hrs. /Week	Theory			Practical		Total
					MS	ES	IA	LW	LE/Viva	Marks
3	1	0	4	4	25	50	25			100
				•						-

COURSE OBJECTIVES

- To be able to understand the concept of metric space, compactness, connectedness and uniform convergence.
- > To be able to develop ideas in constructing rigorous mathematical proofs.
- To be able to determine if a function on a metric space is continuous or discontinuous. ≻
- To understand the concept of pointwise and uniform convergence.

UNIT 1 INTRODUCTIONTO REAL NUMBER SYSTEMAND METRIC SPACES

Real Number system: Completeness property, Finite, Countable and Uncountable Sets, Cantor's set. Metric Spaces: Metric spaces, Some Useful inequalities: Holder's inequality, Cauchy's inequality, Minkowski's inequality. Open sets, Closed sets in a metric space, Closure of a set, Limit Point, Interior Point, Exterior Point and their theorems.

UNIT 2 SEQUENCES

Sequence, Convergence of a sequence, Cauchy Sequence, Limit point of a Sequence. Continuity, Completeness: Complete metric space, Cantor's Intersection Theorem, Dense Set, Contraction Mapping.

UNIT 3 COMPACTNESS AND CONNECTEDNESS

Compactness: Totally bounded, Characterizations of compactness, Finite intersection property, Continuous functions on compact sets. Connectedness: Characterizations of connectedness, Continuous functions on connected sets.

UNIT 4 PROPER AND IMPROPER INTEGRATION

Riemann integration, Sequences and Series of Functions: Definition of point-wise and uniform convergence, Uniform convergence and continuity, Uniform convergence and differentiation.

40 Hrs.

COURSE OUTCOMES

On completion of the course, student will be able to

- CO1 Identify rigorous arguments developing the theory of underpinning real analysis
- CO2 Understand fundamental properties of the real numbers that lead to the formal development of real analysis
- CO3 A pply the acquired knowledge in important practical problems and extend ideas to a new context.
- CO4 Analyze the concept of compactness, connectedness and uniform convergence with various aspects
- CO5 Evaluate the problems of the subsets of a metric space are open, closed, compact and/or connected.
- CO6 Develop abstract ideas in analyzing proofs of theorems

TEXT/REFERENCE BOOKS

- 1. W. Rudin, Principles of Mathematical Analysis, McGraw Hill, 1976.
- 2. R. G. Bartle, Introduction to Real Analysis, John Wiley and Sons, 2000.
- 3. T. M. Apostol, Mathematical Analysis, Addison-Wesley Publishing Company, 1974.
- 4. A. J. Kosmala, Introductory Mathematical Analysis, WCB Company, 1995.
- W. R. Parzynski and P. W. Zipse, Introduction to Mathematical Analysis, McGraw Hill Company, 1982. 5.
- H. S. Gaskill and P. P. Narayanaswami, Elements of Real Analysis, Prentice Hall, 1988. 6

09 Hrs.

11 Hrs.

11 Hrs.

09 Hrs.