20MA101T					Mathematics - I					
Teaching Scheme					Examination Scheme					
	т	Р	с	Hrs. / Week	Theory			Practical		Total
					MS	ES	IA	LW	LE/Viva	Marks
3	1	0	4	4	25	50	25			100

COURSE OBJECTIVES

> To be able to evaluate problems related to differential and integral calculus of complex functions.

- > To be able to obtain area, volume using integral calculus.
- ➤ To be able to formulate and solve various engineering problems using the calculus.
- To study the properties of Matrix algebra and apply them to solve system of algebraic equations.

UNIT 1 DIFFERENTIAL CALCULUS AND ITS APPLICATIONS

Partial derivative and its application, - Euler's theorem - Total derivatives - Jacobians – Maxima and Minima of two variables using Lagrange's multipliers. Convergence of power series.

UNIT 2 INTEGRAL CALCULUS AND ITS APPLICATIONS

Definition Evaluation of double integral (Cartesian – Polar form) – Change of orders - Change of variables – Evaluation of triple integral, change of variables (Cartesian to spherical – and cylindrical) – Applications, area – volume – center of mass – center of gravity by double and triple integral.

UNIT 3 MATRIX ALGEBRA AND ITS APPLICATIONS

Solution of system of algebraic equation - Rank of a matrix, consistency of system of equation - Characteristic equation of a square matrix-Eigen values and Eigenvectors of a real matrix - Properties of eigen values and eigen vectors - Cayley-Hamilton theorem (without proof) finding inverse of a matrix - Diagonalization of a matrix using orthogonal transformation.

Gradient, divergence and curl – Directional derivative – Irrotational and Solenoidal vector fields – Vector Integration – Simple problems on line, surface and volume integrals – Green's theorem in a plane, Gauss divergence theorem and Stokes' theorem (without proofs) – Simple application involving cubes and rectangular parallelepipeds.

On completion of the course, student will be able to

- CO1 Identify the use of convergence of infinite series in engineering aspects.
- CO2 Understand the concept of Directional derivative, Irrotational and Solenoidal vector fields.
- CO3 Apply appropriate tool/method to extract the solutions of engineering problems.
- CO4 Analyze the obtained solution in context with theory.
- CO5 Appraise mathematical problems from real to complex domain.
- CO6 Evaluate problems on Green's, Stokes' and Divergence theorems.

TEXT / REFERENCE BOOKS

COURSE OUTCOMES

UNIT 4 VECTOR CALCULUS

- 1. B. S Grewal, Higher Engineering Mathematics, 43rd Edition, Khanna Pub., Delhi, 2014.
- 2. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, Alpha Science, 3rd Ed., 2007.
- 3. Erwin Kreyszig, Advanced Engineering mathematics, John Wiley, 10th Ed., 2015.
- 4. G. Strang, Linear Algebra and its applications, 4th Edition, Cengage Learning, 2005.
- 5. K. Hoffman and R. A. Kunze, Linear Algebra, Prentice Hall of India, 2002.

08 Hrs.

12 Hrs.

10 Hrs.

10 Hrs.

40 Hrs.